

Mathématiques Générales

Épreuve 1

19 mars 2022

14h-15h30 heure de Paris

Code sujet : ○ ○ ■

FONCTIONNEMENT DES QUESTIONS

- Les *questions à choix multiples* sont numérotées **M1**, **M2** etc. Le candidat y répond en **noircissant** la case correspondant à sa réponse dans la feuille-réponse □. Pour chacune de ces questions, il y a une et une seule bonne réponse. Toute réponse fausse retire des points aux candidats. Noircir plusieurs réponses à une même question a un effet de neutralisation (le candidat récoltera 0 point).
- Les questions à réponse brute sont numérotées L1, L2 etc. Elles ne demandent aucune justification : les résultats sont reportés par le candidat dans le cadre correspondant sur la feuille-réponse △. Tout débordement de cadre est interdit.
- Les *questions à réponse rédigée* sont numérotées **R1**, **R2** etc. Elles sont écrites dans le cadre correspondant sur la feuille-réponse ou la feuille-réponse △, selon le symbole précédant le numéro de la question. Tout débordement de cadre est interdit.

CONSEILS DE BON SENS

- · L'énoncé est (très) long : il n'est absolument pas nécessaire d'avoir tout traité pour avoir une note et un classement excellents.
- Ne vous précipitez pas pour reporter vos réponses, notamment aux questions à choix multiples. Il est préférable d'avoir terminé un exercice avant d'en reporter les réponses.
- Ne répondez jamais au hasard à une question à choix multiples!
- · Selon l'exercice, les questions peuvent être dépendantes les unes des autres ou non. Soyez attentifs à la variété des situations.

Exercice 1. Une suite récurrente

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $u_{n+1}=\frac{1}{3}u_n+2$ pour tout entier naturel n. On pose $a_n=u_n-3$ lorsque n est un entier naturel.

 \square **M1** La valeur de u_2 est :

C $\frac{25}{3}$ D $\frac{37}{9}$ E $\frac{10}{3}$

 \square **M2** La suite $(u_n)_{n\in\mathbb{N}}$:

n'est ni arithmétique, ni géométrique

B est arithmétique c est géométrique

 \square **M3** La suite $(a_n)_{n\in\mathbb{N}}$:

A est arithmétique

est géométrique

C n'est ni arithmétique, ni géométrique

 \square **M4** La raison de la suite $(a_n)_{n\in\mathbb{N}}$ est :

 $\boxed{\mathbf{B}}$ 2 $\boxed{\mathbf{C}}$ $-\frac{2}{3}$ $\boxed{\mathbf{D}}$ Cette suite ne possède pas de raison

|E| 3

 \square **M5** Pour tout entier naturel n, le terme a_n vaut :

□ **M**6

Pour tout entier naturel n, le terme u_n vaut :

$$\boxed{\mathbf{A}} \left(\frac{1}{3}\right)^{n+1} + 3$$

$$\boxed{\mathbf{B}} \left(\frac{1}{3}\right)^n - 3$$

$$\boxed{\mathbf{C}} \left(\frac{1}{3}\right)^{n+2} + 3$$

$$\boxed{\mathbf{D}} -2\left(\frac{1}{3}\right)^{n+2} - 3$$

Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$, en justifiant votre réponse.

Exercice 2. Identités algébriques

- \square M7 Étant donné un réel x différent de -2, la quantité $\frac{2}{x+2}-1$ est systématiquement égale à :

- \boxed{A} $\frac{1}{x+2}$ \boxed{B} $\frac{-x+4}{x+2}$ \boxed{C} $\frac{1-x}{x}$ \boxed{E} aucune des autres réponses
- \square M8 Étant donné un réel x différent de 1 et -1, la quantité $\frac{1}{x+1} \frac{1}{x-1}$ est systématiquement égale à :
- A aucune des autres réponses

- $\begin{bmatrix} \mathbf{E} \end{bmatrix}$ 1
- \square M9 Étant donné un réel x différent de 1 et -1, la quantité $\frac{x}{x+1} \frac{1}{x-1}$ est systématiquement égale à :

- $oxed{A}$ $\dfrac{x-1}{x}$ $oxed{B}$ $\dfrac{x-1}{x+1}$ $oxed{C}$ $\dfrac{x+2}{x-1}$ $oxed{D}$ $\dfrac{x-2}{x-1}$ aucune des autres réponses
- \square M10 Étant donné deux réels non nuls a et b, la quantité $\frac{a}{b} + \frac{b}{a}$ est systématiquement égale à :
 - A aucune des autres réponses

- \square **M11** Étant donné deux réels non nuls a et b, la quantité $\left(\frac{b+\frac{1}{a}}{b}\right)a$ est systématiquement égale à :

 - $oxed{A}$ $b+rac{1}{b}$ $oxed{B}$ aucune des autres réponses $oxed{a}$ $a+rac{1}{b}$ $oxed{D}$ $a+rac{1}{a}$ $oxed{E}$ a+1

- \square M12 Étant donné deux réels a et b tels que $a-b \neq 0$ et $a+b \neq 0$, la quantité $\frac{a-b}{a+b} \frac{b}{a-b}$ est systématiquement
 - A aucune des autres réponses

 - $\boxed{\mathbf{D}} -1 \frac{1}{a}$
 - $E \frac{a^2 ab 2b^2}{a^2 b^2}$

- □ M13 Étant donné deux réels a et b distincts et non nuls, la quantité $\frac{a^{-1} + b^{-1}}{a b} + \frac{a + b}{a^{-1} b^{-1}}$ est systématiquement égale à :
 - A aucune des autres réponses
- $\begin{array}{c}
 ab(a) \\
 \hline
 D \frac{-ab}{(a-b)^2} \\
 \hline
 \frac{(a+b)(1-ab)(1+ab)}{ab(a-b)}
 \end{array}$
- Étant donné deux réels a et b, développer et simplifier l'expression $A=2\left(a-\frac{b}{2}\right)^2+(a+b-1)^2$. On écrira le résultat final sans justification.

Exercice 3. Équations et inéquations

- \square M14 L'équation $2x^2 3x + 1 = 0$ a pour solution(s) :
- C $\frac{3}{4}$ D $-\frac{1}{2}$ et -1B aucune des autres réponses proposées E 1 et 2
- \square M15 L'équation $x^3 + x = 2x^2$ a pour solution(s) :
 - B 1 D 0 C 0, 1 et un autre nombre réel $\begin{bmatrix} \mathsf{E} \end{bmatrix}$ 0 et -1
- \square **M16** L'équation $x^2 = \frac{1}{x}$ a pour solution(s) :
 - $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ 1 et -1 $\begin{bmatrix} \mathbf{C} \end{bmatrix}$ 0 et 1 D 1 et deux autres nombres réels
- \square M17 L'inéquation $-x^2+x-1\geq 0$ a pour ensemble de solutions :
 - A \mathbb{R}
 - B aucune des autres réponses proposées
- $\boxed{\mathbf{C}}$ $\left] -\infty, \frac{1-\sqrt{3}}{2} \right] \cup \left[\frac{1+\sqrt{3}}{2}, +\infty \right[$
- $\boxed{\mathbf{D}} \left| \frac{1 \sqrt{3}}{2}, \frac{1 + \sqrt{3}}{2} \right|$
- l'ensemble vide

- \square M18 L'inéquation $\frac{1}{x-1} > 1$ a pour ensemble de solutions :
-]1;2[
- Donner sans justification l'ensemble des solutions de l'inéquation $x^2 > 2$. \triangle L2
- Donner, en justifiant votre réponse, l'ensemble des solutions de l'inéquation $x^2 + 3 \le 4x + 2$. ○ R2
- \square M19 Le nombre de solutions (réelles) de l'équation $\frac{1}{x^2+1}=2$ vaut :
 - $|\mathbf{A}|$ 3
- $\begin{bmatrix} B \end{bmatrix}$ 2 $\begin{bmatrix} C \end{bmatrix}$ 4
- 0
- $|\mathbf{E}|$ 1
- \square M20 Le nombre de solutions (réelles) de l'équation $\frac{1}{x} \frac{1}{x+1} = \frac{2x+1}{x(x+1)}$ vaut :
 - |A| 1
- B 4
- C 2
- $|\mathbf{D}|$ 3

Exercice 4. Probabilités

Une urne contient initialement une boule bleue et trois boules rouges. On effectue l'expérience suivante :

- On réalise un premier tirage dans l'urne.
 - Si la boule obtenue est bleue, on la remet dans l'urne et on y ajoute cinq boules bleues supplémentaires (l'urne contient alors six boules bleues et trois boules rouges).
 - Si la boule obtenue est rouge, on ne la remet pas dans l'urne (l'urne contient alors une boule bleue et deux boules rouges).
- On réalise ensuite un deuxième tirage dans l'urne selon la même règle que le première tirage.

On note B_1 l'événement « on a obtenu une boule bleue au premier tirage », et B_2 l'événement « on a obtenu une boule bleue au second tirage ».

- ☐ **M21** La probabilité d'obtenir une boule rouge au premier tirage est :

- A $\frac{1}{3}$ B $\frac{3}{4}$ C $\frac{1}{2}$ D $\frac{25}{9}$ E $\frac{1}{4}$
- ☐ M22 On suppose dans cette question uniquement qu'on a tiré une boule bleue au premier tirage. Dans cette situation, la probabilité de tirer une boule bleue au deuxième tirage est :

- $oxed{A} \quad rac{1}{2} \qquad oxed{B} \quad rac{1}{3} \qquad oxed{\Box} \quad rac{2}{3} \qquad oxed{D} \quad rac{1}{16} \qquad oxed{E} \quad rac{1}{6}$

 \square M23 La probabilité calculée à la question précédente est aussi égale à :

$$A P(B_1)$$

$$lacksquare$$
 $P(B_2)$

☐ **M24** La probabilité d'obtenir deux boules bleues (une à chaque tirage) est :

$$\boxed{\mathbf{A}} \quad \frac{1}{4}$$

A
$$\frac{1}{4}$$
 B $\frac{1}{16}$ C $\frac{1}{2}$ D $\frac{2}{3}$

$$\boxed{\mathbf{C}}$$
 $\frac{1}{2}$

$$\boxed{\mathbf{D}} \quad \frac{2}{3}$$

☐ M25 La probabilité d'obtenir une boule bleue au deuxième tirage est :

$$\boxed{\mathbf{C}}$$
 $\frac{1}{2}$

$$\boxed{\mathbf{D}} \quad \frac{1}{5}$$

$$\boxed{\mathbf{E}} \quad \frac{2}{9}$$

□ M26 On note C l'événement « on a tiré deux boules rouges ». Laquelle des assertions suivantes est vraie?

$$\boxed{\mathbf{A}} \quad P(B_2) = P(C)$$

$$B P(B_2) > P(C)$$

$$P(B_2) < P(C)$$

Dans la suite, on note X la variable aléatoire donnant le nombre de boules bleues tirées dans cette expérience.

 \square M27 Les valeurs possibles pour X sont :

 \square **M28** La probabilité P(X=1) vaut :

$$\boxed{\mathbf{A}} \quad \frac{1}{4}$$

[A]
$$\frac{1}{4}$$
 [B] $\frac{1}{12}$ [C] $\frac{2}{3}$

$$\boxed{\mathbf{C}}$$
 $\frac{2}{3}$

$$\boxed{\mathbf{E}} \quad \frac{1}{2}$$

 \triangle L3 Donner sans justification l'espérance de X (sous la forme d'une fraction irréductible).

Exercice 5. Géométrie dans l'espace

L'espace euclidien E est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$. On considère les droites D et D' paramétrées comme suit:

(D)
$$x = t + 2$$
, $y = 3t - 1$, $z = 2t + 2$, $t \in \mathbb{R}$

et

$$(D')$$
 $x = s + 2$, $y = s + 5$, $z = -2s + 1$, $s \in \mathbb{R}$.

On note enfin P le plan d'équation x + y - 2z + 4 = 0.

 \triangle **L4** Donner sans justification un vecteur directeur de D et un vecteur directeur de D'.

 \square **M29** Les droites D et D':

- sont orthogonales
- B sont parallèles
- C ne sont ni parallèles ni orthogonales

 \square **M30** La droite D:

- $oxed{\mathbf{A}}$ est sécante à P mais non orthogonale à P
- lacksquare est orthogonale à P
- est parallèle à P mais non incluse dans P
- $\boxed{\mathbf{D}}$ est incluse dans P

 \square **M31** La droite D':

- $oxed{A}$ est parallèle à P mais non incluse dans P
- est orthogonale à P
- C est incluse dans P
- $\boxed{\mathbf{D}}$ est sécante à P mais non orthogonale à P

Dans la suite, on considère les points de l'espace :

$$A(0;1;3), B(1;4;2), C(3;10;0), D(-1;4;2),$$
 et $E(2;3;1).$

Vrai ou faux?

 \square M32 Les points A, B et C sont coplanaires.

A Faux Vrai

 \square M33 Le triangle ABE est rectangle.

A Vrai Faux

 \square **M34** Les points A, B, C, D sont coplanaires.

Vrai B Faux

 \square **M35** Le point C appartient au segment [AB].

A Vrai Faux

Exercice 6. Calculs de dérivées

 \square M36 La dérivée de la fonction $x \mapsto \frac{1}{x} + \ln(x)$ est la fonction qui à x associe :

$$\boxed{\mathbf{A}} \quad \frac{2}{r}$$

[A]
$$\frac{2}{x}$$
 [B] $\frac{2x-1}{x^2} + \ln(x)$ [C] $\frac{1+x}{x^2}$ [E] $\ln(x) + \frac{1}{x}$

$$\boxed{\mathbf{C}} \quad \frac{1+x}{x^2}$$

$$\boxed{\mathbf{E}} \quad \ln(x) + \frac{1}{x}$$

 \square M37 La dérivée de la fonction $x\mapsto x^2\ln(x)-x$ est la fonction qui à x associe :

$$B \quad x-1$$

$$2x\ln(x) + x - 1 \qquad \qquad \boxed{\mathbf{D}} \quad 2x\ln(x)$$

$$\boxed{\mathbf{D}}$$
 $2x \ln(x)$

$$E$$
 $2x \ln(x) - 1$

 \square M38 La dérivée de la fonction $x\mapsto \frac{1+2x}{2-x}$ est la fonction qui à x associe :

$$\boxed{\mathbf{A}} \quad \frac{2}{2-x}$$

A
$$\frac{2}{2-x}$$
 B $\frac{-2}{(2-x)^2}$ C -2 D $\frac{3-4x}{(2-x)^2}$ $\frac{5}{(2-x)^2}$

$$\boxed{\mathbf{D}} \quad \frac{3-4x}{(2-x)^2}$$

 \Box M39 La dérivée sur \mathbb{R}_+^* de la fonction $x\mapsto e^{x+2\ln x}$ est la fonction qui à x associe :

$$x(x+2)e^x$$

$$\boxed{\mathbf{B}} \quad \frac{x+2}{x} e^x$$

$$\boxed{\mathbf{C}} \quad \frac{x}{x+2} e^x$$

$$\mathbf{E}$$
 $x(x+2)e^x$ \mathbf{E} $\frac{x+2}{x}e^x$ \mathbf{E} $\frac{x}{x+2}e^x$ \mathbf{E} xe^x

$$\boxed{\mathbf{E}} \quad x \, e^x$$

 \square M40 La dérivée sur \mathbb{R}_+^* de la fonction $x\mapsto e^x(\ln x)^2$ est la fonction qui à x associe :

$$\boxed{\mathbf{A}} \ e^x \ln x \left(\ln x + 1 \right)$$

$$\boxed{\mathbf{B}} \frac{2x \ln x + 1}{x} e^x \ln x$$

$$\boxed{\mathbf{C}} \ \frac{x+1}{x} e^x (\ln x)^2$$

B
$$\frac{2x \ln x + 1}{x} e^x \ln x$$
C
$$\frac{x+1}{x} e^x (\ln x)^2$$

$$\frac{x \ln x + 2}{x} e^x \ln x$$

$$\boxed{\mathbf{E}} \frac{2}{r} e^x \ln x$$

 \square M41 Soit u, v et w trois fonctions dérivables définies sur \mathbb{R} . La dérivée de uvw est :

B aucune des autres réponses proposées

$$\boxed{\mathbf{C}}$$
 $vw + uw + uv$

$$u'vw + uv'w + uvw'$$

$$\boxed{\mathbf{E}} \ u'v'w + uv'w' + u'vw'$$

- Donner une expression, la plus simple possible, de la dérivée de $x\mapsto \sqrt{x^2+1}$. \triangle L5
- \Box M42 La dérivée de $x\mapsto \ln \left(x+\sqrt{x^2+1}\right)$ est la fonction qui à x associe :
- $\begin{array}{c|c} \square \mathbf{M42} & \text{La dérivé} \\ \hline \mathbf{A} & \frac{x}{\sqrt{x^2+1}} \\ \hline \mathbf{B} & \frac{x}{1+\sqrt{x^2+1}} \\ \hline \blacksquare & \frac{1}{\sqrt{x^2+1}} \\ \hline \mathbf{D} & \frac{1}{1+\sqrt{x^2+1}} \\ \hline \mathbf{E} & \frac{2x}{\sqrt{x^2+1}} \\ \end{array}$
- Donner sans justification la dérivée de la fonction $x\mapsto x\ln(1+e^{2x}).$ \triangle L6

Exercice 7. Limites de fonctions

 \square M43 Lorsque x tend vers $-\infty$, la quantité $-10x^2 + 3x^6 + 4$ tend vers :

 $\begin{bmatrix} \mathbf{A} \end{bmatrix}$ $3x^6$ $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ $-\infty$

C 1

 \square M44 Lorsque x tend vers 2, la quantité $\left(\frac{1}{x} + x\right) \ln(x)$ tend vers :

une limite finite non nulle

 $\mathbf{B} = 0$

D aucune limite

 \square M45 Lorsque x tend vers $+\infty,$ la quantité $\frac{e^x}{e^{-x}-1}$ tend vers :

A une limite finie non nulle

 \mathbf{B} 0

 $\boxed{\mathsf{C}}_{+\infty}$

D aucune limite

 \square M46 Lorsque x tend vers $-\infty,$ la quantité $e^{2x}-xe^x-x^5$ tend vers :

A aucune limite

 $oxed{B}$ $-\infty$

 $+\infty$

 $D \mid 1$

 $\begin{bmatrix} \mathbf{E} \end{bmatrix} = 0$

 \square M47 Lorsque x tend vers $+\infty$, la quantité $\frac{\ln(1+e^{-x})}{e^{-x}}$ tend vers :

B aucune des autres réponses proposées

1

 $|\mathbf{D}| = 0$

 \square M48 Lorsque x tend vers $+\infty$, la quantité $\frac{\ln(1+e^{-2x})}{e^{-x}}$ tend vers :

B 1

0

 $\boxed{\mathrm{D}}_{\mathrm{+}\infty}$ $\boxed{\mathrm{E}}_{\mathrm{aucune}}$ aucune des autres réponses proposées

 \square M49 Lorsque x tend vers 0, la quantité $\frac{e^{2+3x}-e^2}{x}$ tend vers :

 $\begin{bmatrix} \mathbf{B} \end{bmatrix} e^2 \qquad \begin{bmatrix} \mathbf{C} \end{bmatrix} -\infty \qquad \begin{bmatrix} \mathbf{B} \end{bmatrix} 3e^2 \qquad \begin{bmatrix} \mathbf{E} \end{bmatrix} +\infty$

Déterminer, en la justifiant, la limite quand x tend vers $+\infty$ de $x\left(\sqrt{1+\frac{1}{e^x}}-1\right)$. ○ R3

Exercice 8. Géométrie plane

Dans tout cet exercice, on considère un parallélogramme non aplati ABCD. On prend un point I sur la droite (AC), distinct de A, et on écrit $\overrightarrow{AI} = \mu \overrightarrow{AC}$ où μ est un réel non nul. On prend aussi un point K sur la droite (AB), distinct de A, et on écrit $\overrightarrow{AK} = \nu \overrightarrow{AB}$ où ν est un réel non nul. On note enfin J le milieu du segment [BC].

- \square **M50** Si $\mu = \frac{1}{2}$, alors les droites (IJ) et (AK):
 - $oxed{A}$ sont sécantes quelle que soit la valeur de u
 - f B peuvent être sécantes ou parallèles, selon la valeur de u
 - sont parallèles quelle que soit la valeur de u
- \square **M51** Si $\mu = \frac{1}{2}$, alors :
 - |A| on peut choisir ν pour que I, J et K soient alignés
 - on ne peut pas choisir ν pour que I, J et K soient alignés
- \square **M52** Si $\mu = 1$, alors :
 - $oxed{A}$ I, J et K ne peuvent pas être alignés
 - \blacksquare I, J et K sont alignés si et seulement si K = D
 - I, J et K sont alignés si et seulement si K = B
 - D I, J et K sont alignés si et seulement si K = C
 - $oxed{E}$ I, J et K sont alignés si et seulement si K=A
- \square **M53** Si $\mu = 1$, alors (BI) et (AD) sont :
 - B confondues
- parallèles mais non confondues

Dans toute la suite, on suppose que $\mu \neq \frac{1}{2}$, $\mu \neq 1$ et $\nu \neq 1$.

- \square M54 Les points I, J et K sont alignés si et seulement si :

- R4 Justifier brièvement votre réponse à la question M54.
- \square M55 μ est fixé et on rappelle qu'il appartient à $\mathbb{R} \setminus \left\{0, \frac{1}{2}, 1\right\}$. Laquelle des affirmations suivantes est vraie?
 - Il existe un unique ν tel que I, J et K soient alignés
 - B Il existe une infinité de ν tels que I, J et K soient alignés
 - \square Le nombre de ν tels que I, J et K soient alignés dépend de μ
 - D Il n'existe aucun ν tel que I, J et K soient alignés
- \square M56 Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD})$, une équation cartésienne de la droite (BI) est :
 - A $(\mu 1)x \mu y + (\mu 1) = 0$
 - B $\mu x + (\mu 1)y \mu = 0$
 - C $(\mu 1)x + \mu y (\mu 1) = 0$
 - $\mu x (\mu 1)y \mu = 0$
 - E aucune des autres réponses proposées
- \square M57 Quand (AD), (KC) et (BI) sont concourantes, les coordonnées de leur point d'intersection dans le repère $(A; \overrightarrow{AB}, AD)$ sont :

 - $\boxed{\mathbf{A}} \quad \left(0, \frac{\mu}{\mu 1}\right) \qquad \boxed{\mathbf{B}} \quad \left(0, \frac{1 \mu}{\mu}\right) \qquad \boxed{\mathbf{D}} \quad \left(0, \frac{\mu 1}{\mu}\right) \qquad \boxed{\mathbf{E}} \quad \left(0, \frac{1}{\mu}\right)$

- \square M58 Les droites (AD), (KC) et (BI) sont concourantes si et seulement si :
 - $|\mathbf{A}| \ 2\mu + \nu = 2\mu\nu$
 - $\mu + \nu = 2\mu\nu$
 - $\boxed{\mathbf{C}} \ \mu + \nu = \mu \nu$
 - $D u \nu = \mu \nu$
 - $|\mathbf{E}| \mu + 2\nu = \mu\nu$
- \square M59 Combien y a-t-il de couples (μ, ν) tels que à la fois I, J et K soient alignés, et à la fois (AD), (KC) et (BI)soient concourantes?
 - A Un nombre fini strictement supérieur à 2
 - B Un seul
 - C Aucun
 - D Deux
 - Une infinité

Exercice 9. Fonctions hyperboliques

On définit la fonction cosinus hyperbolique (notée ch) et la fonction sinus hyperbolique (notée sh) sur $\mathbb R$ par :

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$.

On définit la fonction tangente hyperbolique (notée th) par :

$$th(x) = \frac{\sinh(x)}{\cosh(x)}.$$

- \triangle **L7** Donner la dérivée de ch.
- \triangle L8 Donner la dérivée de sh.
- \square **M60** La fonction th:
 - A n'est pas définie en tout réel est définie en tout réel
- \square **M61** La fonction th:
 - A s'annule en plusieurs points B ne s'annule pas s'annule en exactement un point
- \square **M62** Sur \mathbb{R} , la fonction ch :
 - n'est pas monotone B est strictement croissante C est strictement décroissante
- \square M63 Sur \mathbb{R} , la fonction sh :
 - A est strictement décroissante B n'est pas monotone est strictement croissante
- \square **M64** Pour tout réel x, la quantité $(\operatorname{ch}(x))^2 (\operatorname{sh}(x))^2$ vaut :
 - $f A = e^{-2x}$ $f D = e^{2x}$ f E = -1
- \square **M65** Sur \mathbb{R} , la fonction th :
- A est strictement décroissante B n'est pas monotone est strictement croissante

- □ M66 Laquelle des affirmations suivantes est vraie?
 - A Tout réel strictement négatif a exactement deux antécédents par la fonction ch
 - Aucune des autres affirmations proposées n'est vraie
 - C Tout réel strictement positif a exactement deux antécédents par la fonction ch
- D Tout réel non nul a exactement deux antécédents par la fonction ch, mais 0 n'en a qu'un
- E Tout réel a exactement un antécédent par la fonction ch
- ☐ **M67** Laquelle des affirmations suivantes est vraie?
 - A Il existe des réels qui ont plusieurs antécédents par la fonction sh
 - B Tout réel y a exactement un antécédent par la fonction sh et il s'agit de $\ln\left(-y+\sqrt{y^2+1}\right)$
- Tout réel y a exactement un antécédent par la fonction sh et il s'agit de $\ln\left(y+\sqrt{y^2+1}\right)$
- D Il existe des réels qui n'ont pas d'antécédent par la fonction sh
- $oxed{\mathbb{E}}$ Tout réel y a exactement un antécédent par la fonction sh et il s'agit de $\ln \left(y \sqrt{y^2 + 1} \right)$

Dans les questions suivantes, on note $\mathcal C$ la courbe représentative de la fonction th.

- \square M68 Deux points d'abscisses opposées sur $\mathcal C$:
 - A ont systématiquement la même ordonnée
 - ont systématiquement des ordonnées opposées
 - C Aucune des autres réponses proposées n'est vraie
- \square M69 En deux points d'abscisses opposées sur la courbe $\mathcal C,$ les tangentes à $\mathcal C$:
 - A sont systématiquement perpendiculaires
 - B sont systématiquement sécantes en un point de l'axe des ordonnées
 - C sont systématiquement sécantes en un point de l'axe des abscisses
- D Aucune des autres réponses proposées n'est vraie
- sont systématiquement parallèles
- \square M70 $\,$ Les limites respectives de la fonction th en $-\infty$ et en $+\infty$ sont :
 - -1 et 1
 - B 0 et 1
 - $C \mid_{0 \text{ et } +\infty}$
 - $\boxed{\mathbf{D}}_{-\infty}$ et 0
 - $\boxed{\mathrm{E}} \infty \text{ et } + \infty$

- \square M71 La limite quand x tend vers $+\infty$ de $e^x(1-\operatorname{th}(x))$:
 - existe et vaut 0
 - \boxed{B} existe et vaut $+\infty$
 - C existe et vaut 1
 - D n'existe pas
 - $oxed{E}$ existe et vaut $-\infty$
- \triangle **R5** En justifiant votre réponse, déterminer la limite quand x tend vers $+\infty$ de $e^{2x}(1-\operatorname{th}(x))$.

Exercice 10. Autour de la partie entière

Dans cet exercice, on note E la fonction partie entière qui à un nombre réel x attache l'unique entier relatif k=E(x)tel que $k \le x < k + 1$. \square M72 Quelle est la partie entière de $\sqrt{45}$? D 5 Aucune des autres réponses E 7 \square M73 La fonction qui à tout réel positif x associe $E(x^2)$: A est strictement décroissante B n'est pas monotone est croissante mais pas strictement croissante D est décroissante mais pas strictement décroissante | E | est strictement croissante \square M74 L'égalité E(-x) = -E(x) est : Aucune des autres réponses proposées n'est juste f B vraie pour toute valeur du réel xC fausse pour toute valeur du réel x sauf un nombre fini d'entre elles D vraie pour toute valeur du réel x sauf un nombre fini d'entre elles | E | fausse pour toute valeur du réel x \square **M75** La quantité E(2x): $\boxed{\mathbf{A}}$ est égale à $2\,E(x)$ quelle que soit la valeur de x $oxed{B}$ est égale à 2E(x) + 1 quelle que soit la valeur de x

est égale à 2E(x) ou 2E(x) + 1 selon la valeur de xD est égale à 2E(x) ou 2E(x) - 1 selon la valeur de xE Aucune des autres réponses proposées n'est juste

□ M76 Lorsque x parcourt l'ensemble des réels positifs, la quantité $E(x^2) - E(x)^2$:

A parcourt l'ensemble des entiers

B est systématiquement nulle

C parcourt l'ensemble des entiers strictement positifs

D Aucune des autres réponses proposées n'est juste

parcourt l'ensemble des entiers naturels

M77 Lorsque x parcourt l'ensemble des réels, la quantité $E(x^2) - E(x)^2$:

A parcourt l'ensemble des entiers strictement positifs

parcourt l'ensemble des entiers

C parcourt l'ensemble des entiers

C parcourt l'ensemble des entiers naturels

D Aucune des autres réponses proposées n'est juste

E est systématiquement nulle \triangle R6 Déterminer, en justifiant soigneusement votre réponse, l'ensemble des réels x vérifiant $E(x^2) = x + \frac{1}{2}$.